Integrating A2A Protocol - Intelligent Agent Communication Solution for BeeAI Framework

🎯 Key Points (TL;DR)
- A2A Protocol: Linux Foundation-supported open standard for AI agent communication, enabling cross-platform agent collaboration
- BeeAI Integration: Seamlessly integrate external agents and expose internal agents through A2AAgent and A2AServer
- ACP Migration: IBM's ACP protocol has been merged into A2A, providing complete migration guides and tools
- Enterprise Applications: Supports multi-vendor ecosystems including Google, Microsoft, AWS, Cisco, and more
Table of Contents
- What is A2A Protocol?
- A2A Integration in BeeAI Framework
- Migration Guide from ACP to A2A
- Implementation Steps and Best Practices
- Frequently Asked Questions
What is A2A Protocol?
Agent2Agent (A2A) Protocol is an open standard for AI agent communication developed by the Linux Foundation. This protocol aims to solve interoperability challenges in current AI agent ecosystems, enabling seamless collaboration between agents from different platforms, frameworks, and ecosystems.
Core Features of A2A Protocol
- Cross-platform Compatibility: Supports communication between agents built with different technology stacks
- Standardized Interface: Provides unified message formats and communication protocols
- Enterprise-grade Support: Backed by major tech companies including Google, Microsoft, AWS, IBM
- Open Source Ecosystem: Based on open standards, promoting community innovation and collaboration
💡 Industry Background
The birth of A2A protocol stems from the urgent need for unified AI agent communication standards. As AI agent applications grow rapidly, interoperability between different vendors and frameworks has become a key challenge.
A2A Integration in BeeAI Framework
BeeAI framework implements A2A protocol integration through two core components:
A2A Agent (Client)
A2AAgent allows you to easily connect to external agents using the A2A protocol.
# Install dependencies
pip install beeai-framework
pip install 'beeai-framework[a2a]'
Key Features:
- Connect to external A2A-compatible agents
- Handle cross-platform message passing
- Support multiple input/output modes
A2A Server (Server)
A2AServer enables you to expose agents built in the BeeAI framework through the A2A protocol.
Core Advantages:
- Convert existing BeeAI agents to A2A-compatible services
- Support standardized agent discovery and interaction
- Provide rich metadata and capability descriptions
Migration Guide from ACP to A2A
Migration Background
IBM Research's Agent Communication Protocol (ACP) launched in March 2025 has been officially merged into the A2A protocol. This merger aims to:
- Avoid standard fragmentation
- Accelerate protocol development
- Integrate technical advantages
- Establish a unified ecosystem
Quick Migration Checklist
✅ Update Dependencies: acp_sdk
→ beeai_sdk
✅ Update Imports: Modify import statements and function signatures
✅ Replace Metadata: Metadata
→ AgentDetail
✅ Update Message Processing: Adopt new message processing methods
✅ Update Trajectory and References: Use new extension system
✅ Use LLM Service Extensions: Integrate platform-managed LLM configurations
Key Code Changes Comparison
Component | ACP (Old) | A2A (New) |
---|---|---|
Dependencies | acp-sdk>=1.0.0 |
beeai-sdk>=0.3.0 |
Message Processing | input[-1].parts[0].content |
message.parts loop processing |
Context | Context |
RunContext |
Response Output | MessagePart(content=text) |
AgentMessage(text=text) |
LLM Configuration | Environment variables | LLMServiceExtensionServer |
Detailed Migration Steps
1. Update Dependencies and Imports
Old (ACP):
from acp_sdk import Message, Metadata, Link
from acp_sdk.server import Context, Server
New (A2A):
from a2a.types import AgentSkill, Message
from beeai_sdk.server import Server
from beeai_sdk.server.context import RunContext
from beeai_sdk.a2a.extensions import AgentDetail
2. Update Agent Decorators
Old (ACP):
@server.agent(
name="chat_agent",
description="Chat Assistant",
metadata=Metadata(...)
)
async def agent_function(input: list[Message], context: Context):
New (A2A):
@server.agent(
name="Chat Agent",
default_input_modes=["text", "application/pdf"],
default_output_modes=["text"],
detail=AgentDetail(
interaction_mode="multi-turn",
user_greeting="Hello! I'm your AI assistant.",
version="1.0.0"
)
)
async def agent_function(
message: Message,
context: RunContext,
trajectory: Annotated[TrajectoryExtensionServer, TrajectoryExtensionSpec()],
):
Implementation Steps and Best Practices
Environment Setup
# 1. Install BeeAI Framework
pip install beeai-framework
# 2. Install A2A Extension
pip install 'beeai-framework[a2a]'
# 3. Verify Installation
python -c "import beeai_sdk; print('Installation successful')"
Creating A2A Compatible Agents
from beeai_sdk.server import Server
from beeai_sdk.a2a.extensions import AgentDetail, AgentDetailTool
from a2a.types import AgentSkill, Message
server = Server()
@server.agent(
name="Smart Assistant",
default_input_modes=["text", "text/plain"],
default_output_modes=["text"],
detail=AgentDetail(
interaction_mode="multi-turn",
user_greeting="Hello! I can help you answer questions.",
version="1.0.0",
tools=[
AgentDetailTool(
name="Search",
description="Search for latest information"
)
]
),
skills=[
AgentSkill(
id="chat",
name="Conversation",
description="Intelligent conversation assistant",
tags=["chat", "Q&A"]
)
]
)
async def chat_agent(message: Message, context: RunContext):
# Process user message
user_text = ""
for part in message.parts:
if part.root.kind == "text":
user_text = part.root.text
# Generate response
response = f"You said: {user_text}"
yield response
✅ Best Practices
- Use descriptive agent names and detailed descriptions
- Properly configure input/output modes
- Provide clear user greetings
- Describe agent capabilities and tools in detail
Integrating External A2A Agents
from beeai_sdk.a2a.client import A2AAgent
# Connect to external agent
external_agent = A2AAgent(
endpoint="https://api.example.com/a2a",
agent_id="external_chat_agent"
)
# Send message
async def interact_with_external():
response = await external_agent.send_message("Hello, external agent!")
return response
🤔 Frequently Asked Questions
Q: What's the difference between A2A protocol and other AI agent communication standards?
A: A2A protocol has the following unique advantages:
- Linux Foundation Support: Ensures long-term maintenance and neutrality
- Multi-vendor Support: Joint participation from Google, Microsoft, IBM, etc.
- High Standardization: Provides complete specifications and implementation guides
- Rich Ecosystem: Supports multiple programming languages and frameworks
Q: Which programming languages does A2A protocol support?
A: Currently A2A protocol supports:
- Python: Full support, including BeeAI SDK
- JavaScript/TypeScript: Through official SDK
- Java: Community-contributed implementations
- Go: Experimental support
Q: How to handle secure communication between A2A agents?
A: A2A protocol provides multi-layer security guarantees:
- Transport Encryption: Supports TLS/SSL
- Authentication: API keys and OAuth 2.0
- Access Control: Role-based permission management
- Audit Logs: Complete communication records
Q: Does BeeAI framework support local deployment?
A: Yes, BeeAI framework fully supports local deployment:
- Containerized Deployment: Provides Docker images
- Cloud Native Support: Kubernetes configuration files
- Hybrid Deployment: Supports local and cloud hybrid architecture
- Offline Operation: Can run without internet connection
Summary and Action Recommendations
A2A protocol represents an important milestone in AI agent communication standardization. Through BeeAI framework integration, developers can:
Immediate Action Steps
- Evaluate Existing Systems: Check current agent architecture and communication needs
- Install BeeAI SDK: Use
pip install 'beeai-framework[a2a]'
- Create Test Agents: Follow this guide to create your first A2A compatible agent
- Plan Migration Path: If using ACP, develop detailed migration plans
- Join Community: Participate in A2A project GitHub discussions and contributions
Long-term Strategic Recommendations
- Standardization First: Make A2A protocol the preferred standard for agent communication
- Ecosystem Building: Actively participate in A2A community, contribute tools and best practices
- Skill Enhancement: Train teams to master A2A protocol and BeeAI framework
- Monitor Development: Follow protocol updates and new feature releases
⚠️ Important Reminder
A2A protocol is still rapidly evolving. It's recommended to regularly check official documentation and update logs to ensure using the latest version and best practices.
Related Resources:
📚 Protocol Specifications & Guides
- A2A Protocol Specification (Python Version)
- 2025 Complete Guide: Agent2Agent (A2A) Protocol - The New Standard for AI Agent Collaboration
- 2025 Complete Guide: Agent2Agent (A2A) Protocol Advanced Features Deep Dive (Part 2)
- Understanding A2A Protocol: A Comprehensive Guide
🔧 SDKs & Development Tools
- Google A2A Python SDK Tutorial
- A2A JS SDK Complete Tutorial: Quick Start Guide
- A2A .NET SDK Comprehensive Documentation
- Official A2A SDK Python Practical Guide
💻 Programming Language Implementations
- Python A2A: Comprehensive Guide to Google Agent2Agent Protocol
- Python A2A Tutorial
- Python A2A Tutorial (with Source Code)
- Python A2A Tutorial 20250513 Edition
- A2A Protocol Development Guide (TypeScript)
- A2A Java Example
🤖 Practical Application Examples
- A2A Example: Hello World Agent
- Implementing Currency Agent with A2A Python SDK
- A2A Example: Travel Planner OpenRouter Edition
- A2A JS Example: Movie Agent
- A2A Python Example: Github Agent
- A2A Multi-Agent Example: Number Guessing Game
🔌 Extensions
- A2A Traceability Extension: In-Depth Analysis & Application Guide
- A2A Timestamp Extension: In-Depth Analysis & Application Guide
🛠️ Debugging & Tools
- A2A Inspector: In-Depth Analysis of Agent2Agent Communication Debugging
- Using A2A Protocol Validator to Verify Domain Support for A2A Protocol
🔗 Framework Integration
- Implementing A2A Agents with ADK: Complete Development Guide
- A2A ADK Expense Reimbursement Agent
- Building A2A Currency Agent with LangGraph
- LlamaIndex File Chat Workflow with A2A Protocol
- A2A + CrewAI + OpenRouter Chart Generation Agent Tutorial
⚖️ Protocol Comparison Analysis
- A2A vs MCP: Protocol Revolution in AI Architecture
- A2A vs MCP Protocol Relationship: In-Depth Community Discussion Analysis
- A2A MCP: Predicting the Winner in AI Protocol Evolution
- A2A vs ACP Protocol Comparison Analysis Report
- A2A vs MCP vs AG-UI
- AI Protocol Analysis Report: A2A, MCP and ACP
🤝 Protocol Integration
- A2A MCP Integration
- A2A MCP AG2 Agent Example
- AgentMaster Multi-Agent Dialog Framework - Multimodal Information Retrieval System Based on A2A and MCP Protocols